Space-time-bounded quantum fields for detection processes.
نویسندگان
چکیده
WE DISCUSS A QUANTUM FIELD DETECTION MODEL COMPRISING TWO TYPES OF DETECTION PROCEDURES: maximal detection, where the initial state of the system and detectors undergoes an irreversible evolution, and minimal detection, where the system-detector interaction consists of a small, reversible coupling and posterior maximal detection performed over the detector system. Combined, these detection procedures allow for a time-dependent description of signalling experiments involving yes/no type of questions. A particular minimal detection model, stable in the presence of the vacuum, is presented and studied, successfully reproducing the localization of the state after a detection.
منابع مشابه
On Quantum and Classical Space-bounded Processes with Algebraic Transition Amplitudes
We define a class of stochastic processes based on evolutions and measurements of quantum systems, and consider the complexity of predicting their long-term behavior. It is shown that a very general class of decision problems regarding these stochastic processes can be efficiently solved classically in the space-bounded case. The following corollaries are implied by our main result for any spac...
متن کاملThe Quantum Statistical Mechanical Theory of Transport Processes
A new derivation of the quantum Boltzmann transport equation for the Fermion system from the quantum time evolution equation for the wigner distribution function is presented. The method exhibits the origin of the time - irreversibility of the Boltzmann equation. In the present work, the spin dependent and indistinguishibility of particles are also considered.
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملVoltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy
The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...
متن کاملLinear algebra techniques for deciding the correctness of probabilistic programs with bounded resources
An algorithm is outlined for deciding the correctness of (space and time) resource bounded, imperative, probabilistic programs, using linear algebra techniques encoded in the theory of real closed fields. A calculus suitable for reasoning by hand is derived from the proposed encoding. The approach is feasible also for classical, non deterministic, and quantum programs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings. Mathematical, physical, and engineering sciences
دوره 470 2164 شماره
صفحات -
تاریخ انتشار 2014